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DACH recommendations on uncertainties 
and interpretation of grid point values of 
station-based grid data 
Based on analyses and considerations by Christoph Frei (MeteoSwiss) on the 
occasion of the DACH - Workshop of 25 August 2021 

 

Station-based grid data are based on station data that have been spatially interpolated using 
(geo-) statistical methods. These are used wherever information is needed between stations 
with meteorological measurements. Grid data are also needed as a reference for the evaluation 
and bias adjustment of climate projections. However, users need to be aware of the limitations 
of such grid data in order to apply them correctly. In the following, general limitations in 
station-based grid data are described that arise largely independently of the methodology used 
and must be taken into account in a professional application of these data. Grid data from 
satellite and radar measurements or from reanalyses are not discussed here, as they contain 
other limitations. 

 

Measurement uncertainty 

One source of uncertainty in climate grid data sets is the measurement errors of the collected station 
data. These errors usually contain a systematic and a random component. They vary in magnitude 
depending on the parameter, measurement system, meteorological and geographical conditions. 
Precipitation measurements with conventional pluviometers, for example, systematically underestimate 
the real precipitation. In the DACH region, this systematic bias ranges from about 5% in the lowlands in 
summer to more than 50% at wind-exposed locations above 1500 m in winter (Sevruk 1985; Richter 
1995, Kochendorfer et al. 2017). In addition, there are random errors, which are very large in relative 
terms for small amounts of precipitation. Measurement errors, systematic and random, potentially 
significantly affect the accuracy of grid datasets. The contributions of random measurement errors can 
be quantified via cross-validation, and their magnitude is usually described in documentations of the 
datasets. Users are encouraged to consult the relevant literature to familiarize themselves with the 
magnitudes and characteristics of measurement errors, and to assess their effects on the specific 
application. The spatial propagation of measurement errors is currently not considered in the grid data 
sets. It would have to be modelled geo-statistically analogous to the propagation of the measured 
values themselves. For the spatial estimation of the systematic precipitation deficit, for example, 
temperature and wind fields would have to be explicitly taken into account. 

 

Conditional Bias 

The spatial interpolation of measurements at stations is inevitably associated with uncertainties, 
because the spatial distribution of a climate parameter is only described incompletely from the 
available measurements. On the one hand, this uncertainty manifests itself in random errors of the 
individual estimates at grid points. In addition, it manifests itself in "conditional biases", systematic 
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errors depending on the location in the corresponding distribution. In general, the low extremes are 
overestimated and the high extremes underestimated. The interpolation uncertainty, although random 
in single cases, causes systematic errors (biases) in the climatological distribution and thus biases in 
common climate indices. In a daily precipitation data set, the "wet-day frequency" is overestimated, as 
well as the "wet-day intensity" and, to a particular extent, the high quantiles (heavy precipitation) are 
underestimated. The effects of interpolation uncertainty can also affect the mean values: When 
creating a background field, for example for seasonal temperature averages, the estimates are 
underestimated at abnormally warm locations (e.g. in cities in summer) and overestimated at 
abnormally cold locations (e.g. in deep Alpine valleys in winter). More generally, the actual spatial 
variability (roughness) of a parameter in a (deterministic) grid data set is underestimated.  

The phenomenon of conditional bias (often referred to as "smoothing effect" or "representativity error") 
is related to interpolation uncertainty in combination with the goal of minimizing the error of 
interpolation (optimal prediction). Error minimization is a fundamental principle of statistical prediction, 
and inherent in all methods of producing grid datasets, either explicitly in statistical methods (e.g. 
regression, kriging, general additive models) or implicitly in heuristic methods (e.g. in calibration via 
cross-validation, weighting methods). Conditional biases are therefore a very general limitation of 
today's grid datasets, independent of the method used for production. Avoiding them requires a 
fundamental paradigm shift from classical deterministic estimation to possible realizations based on 
stochastic simulation (e.g. Cornes et al. 2018, Frei & Isotta 2019). However, more methodological 
research and time for development are needed before this paradigm shift can be fully implemented. 

The magnitude of conditional biases is directly dependent on the magnitude of interpolation 
uncertainty. That is, they are  
(a) smaller in precipitation in winter than in summer (spatial scale of precipitation systems),  
(b) smaller in regions and in time periods with dense observation networks (amount of available 
information),  
(c) smaller for mean values over larger areas than for point values at one location,  
(d) smaller for monthly mean values than for daily values,  
(e) smaller in the middle of the distribution than for extremes.  

These dependencies can also cause inconsistencies in the data sets. For example, if the station 
density varies over time, artificial trends arise because the conditional bias changes over time. 

Unfortunately, the conditional biases present in a grid dataset are usually poorly documented, which is 
related to the complex dependencies, but also to the lack of awareness in the grid data community 
itself. This makes it difficult for a user to get an informed picture of this constraint on their specific 
application. A very valuable and general recommendation to avoid the effects of conditional bias is to 
interpret data sets on larger spatial scales. There, the uncertainties and thus the conditional biases are 
smaller. Information on the critical space scale (effective resolution) can be found in data set 
documentations (see also details in the following section). 

 

Effective resolution 

The mesh size of modern regional grid datasets is in the range of 1 km. The typical spacing of 
measuring stations, for current measuring networks, is 15 km for precipitation and 30 km for 
temperature. For measurement networks prior to 1960, this distance is even significantly wider. The 
spatial distribution in a 1-km grid dataset is therefore largely based on the relationship of the parameter 
to topographic characteristics. If these relationships are unclear, e.g. generally for precipitation or 
temperature during complex weather events (“Föhn”, cold-pools in winter, topographically influenced 
boundary layers during high pressure in summer), then estimates at this scale are associated with 
considerable uncertainty. This manifests itself in excessive (unrealistic) smoothness and in systematic 
errors in the statistical characteristics (conditional bias). The estimated values at a grid point do not 
have the climate (statistical characteristics) of point values or pixel means at this scale, but the climate 
of an area mean over a larger area (e.g. Hiebl and Frei, 2017). In most grid datasets available 
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today, the scale of the resolved features is much coarser than the mesh size, often a multiple of it. In 
that case, the mesh size used in the gridding is just a technical quantity but bares little information 
about the space scales actually resolved. The misunderstanding that "finer mesh size equals better 
resolution" often leads to unjustified interpretations of the data sets by users.  

The "effective resolution" is the scale limit beyond which a user can expect the statistics calculated 
from the grid data (indices, quantiles, spatial variance) to be realistic, i.e. largely free of conditional 
biases. For variables with poor relationships to topographic predictors (e.g. precipitation), the effective 
resolution is of the order of the typical station spacing. For small-scale summer precipitation even a 
multiple of this. For variables where there are auxiliary quantities providing a high degree of additional 
information for the interpolation (e.g. the topography for temperature), the effective resolution is also 
finer than the station spacing. This is also true for flat regions and for variables that vary little in space. 
The km-scale mesh size of most grid datasets in the DACH area is the lowest common denominator for 
most applications. It simplifies their technical implementation, e.g. in hydrological applications that often 
run on the km-scale or for the validation of regional climate models that currently exist on 2-20 km 
mesh sizes.  

It is important that users consider the limited effective resolution of the datasets and assess what 
effects this may have on the application beforehand. Spatial modelling of non-linear processes at fine 
spatial scales, for example, is highly susceptible to errors in spatial variance and to underestimation of 
extremes, which are common in today's climate datasets. Similarly, there is a risk that the validation of 
extremes (e.g. high precipitation quantiles) in km-scale climate models will be affected by the 
conditional biases in the reference datasets. Here, a prior spatial aggregation to at least the mean 
station spacing is recommended. The station spacing is parameter-dependent in most measurement 
networks. Aggregation to sub-catchments is also useful and facilitates e.g. the water balance analysis. 
Finally, applications with high requirements on long-term consistency are at risk from temporal changes 
in the density of station data used in the datasets. Again, what can help further here is spatial 
aggregation to scales that can be reliably mapped from the available measurement networks over the 
entire period. 

Observational datasets (and applications based on them, such as bias-adjusted high-resolution climate 
projections) are often seen as a worry-free interface between climatology and climate impact research. 
It is tempting to look at these datasets as if there is a measurement at every km point. This notion is 
wrong. Although such datasets offer significant advantages in application, their proper use requires the 
user to address details of their construction, especially the density of the measurement networks used, 
and to assess the risks of constraints on their application. We encourage users to evaluate their use 
case together with the creators of the grid datasets. 
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