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1 Summary 
It is well known that precipitation grids exhibit biases during snowfall events due to either an undercatch 

of precipitation gauges or the interpolation when there are too few gauges, especially at high elevations. 

However, in Switzerland daily snow depth observations are available from a network of 450 monitoring 

sites with a focus on high-altitude regions. This data set was used to correct the solid precipitation phase 

from the widely used Swiss daily precipitation grid product RhiresD. 

Solid precipitation was determined from RhiresD using a partitioning function based on air temperature 

at an hourly time step. Hourly COSMO reanalysis data were used to disaggregate daily fields of 

precipitation and air temperature observations, limiting the analysis period to the last seven years from 

September 2015 to August 2022. Alternatively, solid precipitation was also estimated with a parametric 

snow model based on snow depth data from the monitoring sites. This model has been trained on over 

10000 snow pit measurements and shows no bias compared to 20 years of bi-weekly observations of snow 

water equivalent from 45 locations at different altitudes in Switzerland. 

These two datasets were combined using a data assimilation method called Optimal Interpolation (OI). OI 

seeks the best (i.e. minimum error variance for the analysis), bias-free guess of the unknown field (here 

solid precipitation) by updating prior information on the grid (RhiresD) with observations (monitoring 

data). These updates result in day-by-day corrections of the grid, but are only available for the analysis 

period, i.e. the last seven years of the dataset. To obtain long-term corrections for climatological 

applications, bias statistics were developed that vary monthly. A global correction of 20 % more solid 

precipitation was used as a benchmark. The monthly and spatially varying corrections fluctuated around 

this value. A clear trend in elevation could not be identified due to regional differences in the measurement 

networks for snow and precipitation observations.   

The correction products were evaluated at the point scale using cross-validation. This assessment showed 

an increase in performance from none to global to monthly to daily correction. After daily correction, the 

lowest bias category contained about 15% more stations compared to uncorrected data and about 6% 

compared to the benchmark. The mean squared error of snow depth, modelled with an energy balance 

snow model fed with these corrected and uncorrected input variants for solid precipitation, was reduced 

by about 25% in the highest altitude category (around 2500 m) compared to the uncorrected input or the 

benchmark. Below 1500 m, however, where most snowfall occurs close to 0°C, the error reduction was 

negligible. 

Two methods were chosen for a spatial evaluation, firstly a water balance analysis and secondly a 

validation with lumped hydrological models in about 60 relatively undisturbed catchments in Switzerland. 

In such spatial applications, it must be considered that flat field observations overestimate snow depth 

compared to complex surrounding terrain. To compensate for this effect, an additional correction for steep 

terrain based on LiDAR data used in previous publications was developed. The two errors, gauge 

underestimation and representativeness error, happened to be of similar magnitude but with opposite 

sign. This complicates any spatial evaluation, as the combined correction, especially when aggregated at 

the catchment scale, was comparatively small. Accordingly, the methods were not accurate enough to 

verify/falsify any benefit of using the corrected precipitation fields in the context of hydrological modelling.  



2 Scientific report 

2.1 Introduction 

2.1.1 Motivation / Background 
Snow is an essential component of the water cycle in Switzerland. More than 30% of the total precipitation 

is snowfall, and about 40% of runoff in Swiss rivers originates from snowmelt. Seasonal snow constitutes 

a temporary storage of precipitation, and its condensed release during a relative short period of time 

entails seasonally variable runoff. But the presence of snow cover also has other important implications. 

It drastically increases the land surface albedo with direct feedbacks on radiative fluxes and surface 

temperatures, which in turn affect, amongst other meteorological variables, air temperatures and 

turbulent heat fluxes. These variables do not only affect snowmelt but also set boundary conditions 

relevant to plant growth and other ecological processes. Further, the presence of snow directly affects 

wildlife and plant functioning, e.g. by hampering the mobility of animals or determining the light 

availability for low vegetation. For the above reasons, snow is considered an essential climate variable 

(ECV). 

Measuring snowfall amounts is difficult. Precipitation gauges have a known undercatch for solid 

precipitation (e.g. Goodison et al. 1998; Rasmussen et al., 2012; SPICE project). At an alpine site in 

Switzerland (Weissfluhjoch, Davos) Smith et al. (2020) found an undercatch of 45% in comparison to a 

double fenced automatic reference gauge. Many studies have also shown that the relationships between 

wind and undercatch have a large scatter. Transfer functions have been developed as part of the SPICE 

project (e.g. Kochendorfer et al., 2021). However, the magnitude of these unresolved errors decreases 

significantly when more effective shielding is used (Kochendorfer et al., 2021). This is especially a problem 

in Switzerland, where most precipitation gauges are not shielded. Other known problems arise from the 

accumulation of snow in and on the gauge, which either obscures the gauges and/or later releases snow 

in the gauge. 

Switzerland has a worldwide unique station density measuring snow depth. Approximately 100 

Intercantonal Measurement and Information System (IMIS) snow stations were built in the late 90ies in 

flat and sheltered terrain to estimate new snow fall amounts. Snow depth from these and other stations 

(SwissMetNet, the automatic measurement network of MeteoSwiss) and several manual observers with 

at least one reading a day provide valuable information for two operational services run by the SLF in 

Davos, namely the Avalanche Warning Service and the Operational Snowhydrological Service. IMIS 

stations provide an additional benefit to the existing station network of MeteoSwiss since they are typically 

not mounted in the valleys, but in elevations between 1200 m and 3000 m (mean: 2200 m). Integrating 

snow information from IMIS stations, SwissMetNet, and from manual observers into widely used Swiss 

precipitation products is therefore aimed directly at Pillar 2, Priority 2.1 of of the GCOS Call for Proposals 

10/2020.  

Snow distribution is highly variable in space and time, and variability across different spatial scales is due 

to different processes. While larger-scale weather patterns drive regional snow distribution patterns that 

vary dramatically between years, it is micro topography and vegetation that shape small-scale snow 

distribution patterns, which are remarkably persistent between years. Obviously, snow is also stratified 

with elevation, slope, and aspect at intermediate spatial scales due to orographic effects on precipitation 

and air temperature including precipitation phase, preferential deposition of snowfall, and the 



redistribution of snow on the ground. These aspects make studying snow distribution dynamics both an 

interesting and challenging undertaking. 

While flat and sheltered conditions at IMIS stations may provide for good snow measurements, they 

unfortunately do not provide representative values. In fact, true spatial mean values are typically 

overestimated if assessed based on data from flat measuring sites (Grünewald et al., 2015). This is because 

on average snow is shallower in sloped terrain, within forests, and in exposed terrain. This project will 

account for this effect building on published work. 

2.1.2 Brief overview of work done 
Biases in snowfall estimates for widely used precipitation grids were determined using snow observations, 

snow modelling and data assimilation routines, which resulted in the development of pixel-wise and both 

daily and monthly varying correction schemes. The established correction scheme for RhiresD was 

evaluated at the point scale using cross-validation at 450 stations. At the spatial level, it was examined 

whether an assessment of the water balance or the performance of the hydrological model would benefit 

from corrected data. 

2.2 Methods 

2.2.1 Data 
Daily snow depth measurements (Figure 1) from seven years were used, i.e. from September 2015 to 

August 2022. Stations and manual observations from different sources were integrated, namely IMIS snow 

stations, SwissMetNet, manual observers, and weather stations from Austria, Germany, and France, 

resulting in a total of 437 locations. The IMIS stations are in high mountain regions, which provides value 

for this project (Figure 1b, c).  

 
  

Figure 1. IMIS snow station (a), spatial distribution of daily snow depth observations (b) and elevation distribution (c). 

Daily air temperature measurements from 256  weather stations were used for the same period to split 

the total precipitation into its solid and liquid phases. Hourly COSMO reanalysis data was used to time-

disaggregated daily air temperature and precipitation data. For the independent point-by-point 

evaluation, snow water equivalent (SWE) observations were used, which were measured manually every 

two weeks at 45 locations in Switzerland. For a spatial evaluation, runoff measurements were used at 

around 70 relatively undisturbed catchments in Switzerland in the period from 1989 to 2018.   

Two precipitation products were used to calculate the correction factors: Firstly, the gridded deterministic 

daily precipitation network RhiresD v2.0 (MeteoSwiss, 2021) and the probabilistic gridded product 

RhydchprobD (MeteoSwiss, 2019; Frei and Isotta, 2019). The two precipitation grids to be corrected are 

referred to in the following only as "RhiresD" for better readability. 

(a) (b) (c) 



2.2.2 Pseudo-observations of solid precipitation 
A parametric model (HS2SWE, Magnusson et al., 2014) was used to calculate the daily solid precipitation 

(HNW). This model was calibrated using the snow depth measurements described in Section 2.2.1 and 

derives Snow Water Equivalent (SWE) using observed snow depth (HS) as it accumulates, compacts, and 

melts layer by layer (Magnusson et al., 2014). 

2.2.3 Determining the precipitation phase  
The daily RhiresD precipitation grid was divided into a solid and a liquid precipitation phase at an hourly 

time step. The required temperature grids were determined in a similar way as the TabsD product (Frei, 

2014). Both the daily precipitation and air temperature grids were time-disaggregated using hourly 

COSMO data. The hourly COSMO air temperature data were modified maintaining the same daily mean as 

the daily grid for each individual grid cell. Since the spatial precipitation patterns determined by station 

interpolation or by a numerical weather prediction model can be very different, an alternative to the pixel-

by-pixel approach was chosen. The hourly precipitation grids were gradually blurred with a low-pass filter 

to ensure that each pixel with precipitation in the daily grid was matched by a pixel with precipitation in 

the hourly grid. Air temperature and precipitation were then interpolated to station locations. Finally, the 

precipitation partitioning function derives the phase for each pixel and station location using a logistic 

smoothing function whose parameters, originally determined by Magnusson et al. (2014), were adapted 

to the hourly time step used here. 

2.2.4 Data assimilation of point pseudo-observations 
Optimal interpolation (OI) was applied to update daily solid precipitation (HNW) using the pseudo-

observations described above. Figure 1 illustrates this procedure. RhiresD solid precipitation showed 

considerable differences to pseudo-observations at the stations, which was minimised after correction 

through Optimal Interpolation, e.g. in the Valais or Plateau. Since OI works best with an unbiased 

background field, Magnusson et al. (2014) determined a global undercatch correction of 20 % for the 

RhiresD solid precipitation, so that it best matched the pseudo-observations at all stations. This constant 

correction factor of 20 % was also used as a benchmark for correction factors developed later, which is 

more spatially and temporally specific. A mathematical description of the OI and further details can be 

found in Magnusson et al. (2004). OI was applied to grid and to station locations. As HS measurements and 

pseudo-observations are subject to errors, the output of OI at the station locations were used to calculate 

correction factors (next Section). They can be seen as the best compromise between two types of 

information that are both subject to errors. 

 

Figure 2. Modelled solid precipitation based on COSMO data, before (a) and after (b) assimilation of snow station data. Circles 
represent snow observations, the grid represent the interpolated values after Optimal Interpolation (OI). 

(a) (b) 



2.2.5 Correction factors 
The daily updated solid precipitation provides the day-by-day correction of RhiresD. This is available for 

seven years and could be used for now-casting applications in the future. To determine a correction factor 

suitable for climatological applications, monthly varying correction factors were simply calculated as the 

temporal sum of updated solid precipitation divided by the sum of RhiresD solid precipitation determined 

at each pixel and station location. Only pixels/stations receive a correction factor if there were at least five 

days with more than five millimetres of snow in the data set. This results in data gaps particularly at lower 

elevation and in the summer months, which were filled with ordinary kriging. RhydchprobD was treated 

differently from RhiresD: as this product does not take orographic precipitation into account (Frei and 

Isotta, 2019), the long-term climatology of RhiresD was applied to eight ensemble members of 

RhydchprobD. For this purpose, the long-term climatology of RhydchprobD was calculated and daily 

anomalies were calculated, which were finally multiplied by the long-term climatology of RhiresD. 

2.2.6 Point evaluation  
At the station scale, different variants of solid precipitation were tested: (i) uncorrected RhiresD solid 

precipitation (see Section 2.2.3), (ii) RhiresD only corrected with a constant undercatch of  20 % (see 

Section 2.2.4), (iii) monthly varying correction factor (individual for each station, see Section 2.2.5) and (iv) 

a daily correction (individual for each station, see Section 2.2.5). These solid precipitation variants were 

compared with the pseudo-observations described in Section 2.2.2). As this is an error-prone and modelled 

variable, continuously measured snow depth (HS) and bi-weekly measured SWE were also used as a 

reference. For this purpose, the different variants of solid precipitation were fed into an energy balance 

snow model FSM (Essery et al., 2015), whose output was analysed by HS and SWE. Cross-validation was 

used to assess the ability of OI to interpolate to new sites. Cross-validation was also used to evaluate a-

priori settings of OI. 

2.2.7 Spatial evaluation 
For the spatial evaluation it is important to consider that point measurements of solid precipitation on flat 

fields overestimate the surrounding mean value in complex terrain (see Introduction). To account for this 

overestimation, a precipitation multiplier was used that is a robust function of slope at a sub-grid scale of 

25 m. Slope is largely correlated with small-scale roughness (Lehning et al., 2010). This function was 

determined based on previous publications (Grünewald et al., 2015). As these data do not cover forested 

terrain, no correction was made for forested parts of Switzerland (similarly based on a sub-grid scale of 25 

m). Daily solid precipitation derived from RhiresD was multiplied by a monthly and pixel-wise varying 

correction factor and a pixel-wise varying precipitation multiplier. Only the solid phase was altered, while 

the liquid phase was added to receive total precipitation.  

Since there are no widespread LiDAR data available for observing snow depth in Switzerland, runoff 

measurements in rather undisturbed catchments in Switzerland were chosen to test different total 

precipitation variants. The selection of catchments is based on previous studies (Griessinger et al., 2019; 

Brunner et al., 2019). First, the water balance was calculated using runoff measurements and modelled 

real evapotranspiration with PREVAH (Viviroli et al., 2009). Different variants of total precipitation 

amounts were tested, e.g. with/without the precipitation multiplier/undercatch correction factor. Note 

that it is methodologically incorrect to use only the undercatch correction at the spatial scale. We included 

this to test if our evaluation methods could falsify this obviously wrong input variant. Second, the ability 

of four lumped conceptual hydrological models (HBV in the TUWmodel R package, Viglione and Parajka, 

2020; GR4J to GR4J with CemaNeige snow module in the airGR R package, Coron et al., 2020) to transfer 



calibrated parameters in time with uncorrected and corrected precipitation input was tested. TabsD (Frei, 

2014) was used to produce spatial averages of air temperature. The models were calibrated with the first 

half of a 30-year data set and evaluated with the second half, and vice versa. For calibration and evaluation, 

the Kling-Gupta-Efficiency (KGE) criterion (Gupta et al., 2009) was used. 

2.3 Results 

2.3.1 Pseudo-observations of solid precipitation 
A long-term comparison between simulated Snow Water Equivalent (SWE) values and bi-weekly manual 

observations shows no bias.  

2.3.2 Correction factors 
Figure 3a shows a static correction factor, i.e. calculated for the whole data set, for RhiresD. The values 

ranged from 0.4 (overestimation of RhiresD solid precipitation) to 1.7 (underestimation). Note that the 

values in the Plateau were particularly prone to uncertainties because the dataset was small (not many 

snowfalls greater than five millimetres in seven years). In addition, snow modelling around the melting 

point is challenging due to mixed precipitation phase or simultaneous accumulation and melt processes. 

The modelling uncertainty at higher elevations is much lower, as the number of days in the dataset 

increases and the relative number of warm days with snowfall decreases. These areas mainly showed 

corrections around 1.2 (Figure 3b, red dots) with a slight elevation gradient, but also a large scatter due to 

regional differences. These regional differences were most obvious in the Glarus and the Vorderrhein, 

where the corrections were larger, or conversely in the upper Rhone region (Goms), where the corrections 

were smaller. These regions were already identified by Magnusson et al. (2014) using similar methods.  

The generally low correction factor of 1.2 over large areas in the Swiss Alps is remarkable. The undercatch 

of an unshielded precipitation gauge in the Swiss Alps at the Weissfluhjoch was quantified with 45% (Smith 

et al., 2020). However, these values were quantified for snow only, while the here presented correction 

factors also included mixed precipitation. Calculating correction factors based only on data if the air 

temperature was below -2°C (using the same threshold as in Smith et al. (2000)) resulted in much larger 

values (Figure 3c) and similar to those reported from SPICE. For the same reasoning, colder winter months 

have higher correction factors compared to warmer spring months (Figure 3d). Another reason for the 

conservative estimate could be found in the OI routine: When the correction factors were calculated 

directly with pseudo-observations instead of using the OI output (Figure 3b, blue dots), they are less 

conservative as the proposed correction factors using OI (red dots). Furthermore, interpolation and 

extrapolation routines of RhiresD define how precipitation is determined in high elevation areas with a 

limited number of gauges. These seasonally and regionally varying routines may overestimate snow fall in 

higher elevations. Both reasons can also explain observed regional differences. 

We conclude that the correction factors presented here were conservative compared to single site 

estimates. Reasons for this can be found in the snow modelling and the RhiresD data processing chain.  



 
 

 
 

Figure 3. Static correction factor for RhiresD at station locations (circles) and on a 1 km grid (a), and elevation dependency of 
station locations of CF (red) or pseudo-observations divided by RhiresD solid precipitation (blue) (b), static correction factor 
excluding warm days (>-2 °C) (c), and seasonal dependency of the correction factor (d).  

Correction factors were also calculated for eight ensemble members of RhydchprobD (not shown). Spatial 

patterns are similar between ensemble members (which should be the case since ensemble members are 

not temporally dependent on each other) and to RhiresD. 

2.3.3 Point evaluation  

2.3.3.1 Estimation of OI a-priori settings 

The values presented so far were created with settings for OI already used in Magnusson et al. (2014). The 

expected uncertainty of the presented correction factor grid would favour a smoother interpolation than 

the one presented in Figure 3a. Therefore, the horizontal and vertical correlation length scales of the 

background field (i.e. RhiresD solid precipitation debiased with 20 %) were altered stepwise from 300 km 

to 30 km in the horizontal direction and from 2000 m to 250 m in the vertical direction to obtain potentially 

smoother fields. These parameter settings were cross-validated at the approximately 450 stations. The 

default settings of 30 km and 500 m received the best values, so they were retained for further analysis. 

As the aim of this section to produce smoother correction factor fields could not be achieved by choosing 

different but similarly good correlation length scale parameters, the use of low-pass filters was tested to 

remove unwanted small-scale variance (not shown). 

Cross-validated (CV) estimates of RMSE and bias were analysed for four different variants of solid 

precipitation (RHIRESD), a benchmark method which globally corrects with a factor of 1.2 (RHIRESD 1.2), 

(b) 

(c) (d) 

(a) 

CF 



a spatially (pixel/station-based) and monthly varying correction factor (CF) and a spatially varying daily 

correction (OI) After daily correction, the lowest bias category contained about 15% more stations 

compared to uncorrected data and about 6% compared to the benchmark (not shown). 

The same variants of solid precipitation were fed into the energy balance snow model FSM to compare 

results with observed snow depth, which is not a pseudo-observation like solid precipitation. Figure 4 

shows the cross-validated RMSE and bias in different elevation classes. In the highest class, an expected 

increase in quality can be seen in both the RMSE and the bias. A reduction of the snow depth RMSE by 

approx. 30 % and 25 % compared to the uncorrected input and the benchmark, respectively, can be 

observed. Also in the second highest class, the values for the input variants CF and OI were best. In the 

lower classes, the differences between the precipitation variants were small. A negative bias, which would 

indicate that the correction factors applied are too conservative, could not be detected. 

In summary, the evaluation of the point correction factors indicates that correcting RhiresD solid 

precipitation with the proposed correction factors provided an overall advantage, particularly at high 

elevations. However, this advantage was relatively small compared to a very simple benchmark where 

solid precipitation was corrected at a constant 20%, and furthermore, this advantage was not present for 

all quality metrics examined. 

 

Figure 4. Cross-validated RMSE (a) and bias of modelled snow depth taking different solid precipitation versions as input for energy 
balance snow modelling. 

  

(a) 

(b) 



2.3.4 Spatial evaluation 
For the spatial evaluation, the overestimation of snowfall that occurs in typical flat field observations 

compared to the surrounding complex terrain was considered with the developed precipitation multiplier 

(prec_multi, Figure 5a). Figure 5b shows the effective correction on total precipitation, i.e. the combined 

effect of undercatch and representativeness error, averaged on selected catchments. The results show 

that the two errors almost balance each other out. The representativeness error was often larger than our 

undercatch error estimates, which resulted in a downward correction for most catchments, especially in 

central Switzerland.  

  
Figure 5. Precipitation multiplier (prec_multi) correcting for overestimation of flat field observations relatively to surrounding 
complex terrain (a) and the combined effect on total precipitation averaged per catchment (ptotal effective corr) (b). The selected 
catchments are represented by grey polygons. 

2.3.4.1 Water balance assessment 

Mean annual precipitation of three different variants was plotted against the observed runoff and 

modelled real evapotranspiration in selected catchments (Figure 6). No improvement but rather a 

deterioration of the corrected versions compared to the uncorrected RhiresD variant could be observed, 

e.g. due to a slope parameter closer to one or a better R2. However, large uncertainties in both the 

observed runoff and the modelled evapotranspiration make this type of evaluation problematic. 

 

Figure 6. Mean annual values of precipitation variants plotted against observed runoff (Q) plus modelled real evapotranspiration 
Q, RhiresD uncorrected (a), correction of undercatch (CF) (b), correction of undercatch (CF) and overestimation of flat fields 
(prec_multi) (c). The colours indicate the correction for each precipitation variant. An equation of a linear regression fitted to the 
points is shown. 

(a) (b) 

(a) (b) (c) 



2.3.4.2 Hydrological modelling 

The Kling-Gupta efficiency (KGE) of the validation period of four different lumped conceptual hydrological 

models is shown in Figure 7. Especially in spring, some catchments for the GR6J model seem to show an 

improvement over the uncorrected version of RhiresD. However, most values were within an approximate 

sampling uncertainty of the KGE or are less good. A clear advantage of the corrected variants could not be 

observed in this evaluation. Note, that these simple hydrological models seem to be able to produce quite 

good KGE values for substantially different precipitation variants outside a calibration period for most 

catchments, i.e. despite their relatively small number of parameters (6, 7, 8, 15), they were able to 

compensate for input errors. 

 

Figure 7. The Kling-Gupta-Efficiency (KGE) criterion of four different lumped conceptual hydrological models using two different 
corrections of RhiresD as input vs. uncorrected RhiresD. Plotted are values for different seasons. All values are from a 15-year long 
validation period outside of a 15-year long calibration period. An approximate sample uncertainty range of +-0.05 is indicated with 
the two dark lines (Clark et al., 2021).  

Both evaluation methods, i.e. water balance analysis and the evaluation with lumped hydrological models, 

could not distinguish between corrected, uncorrected or incorrectly corrected precipitation. And this 

despite the fact that the incorrectly corrected precipitation differed greatly from the other variants. For 

the hydrological modelling part, the differences shown between the input sources may also stem from 

parameter uncertainties in the model, which could be estimated with Markov Chain Monte Carlo methods, 

or from random perturbations in the precipitation inputs. This suggests, that calibrated hydrological model 

simulations did not provide a framework suitable to infer information about the quality of the input data.   

  



2.4 Conclusions and limitations 
In this project, grid point specific corrections for daily solid precipitation for widely used Swiss precipitation 

grids were produced and evaluated. The monthly varying corrections can be applied to a long-term 

climatology of precipitation grids. A day-by-day correction is available for the last seven years. On the point 

scale, the correction factors for the underestimation of gauges fluctuated around 1.2. Regional differences 

have prevented the formation of a clearer altitudinal gradient. Due to published results an undercatch of 

snow (no mixed precipitation) of about 45% in the Swiss Alps at approximately 2500 m elevation was 

expected. When excluding mixed precipitation (with excluding warm days > -2 °C), corrections in a similar 

magnitude could be achieved.  A limitation is the parametric snow model used for snow accumulation, 

compaction and melting, which is a rather simple approach compared to energy balance snow modelling. 

This implies that important processes such as simultaneous accumulation and melting or the varying 

density of new snow could not be taken into account. However, it was shown that this method was robust 

for stations at different elevations. We were able to show that at the point scale it was beneficial to correct 

for solid precipitation using the proposed methods, but the benefits of the more elaborate corrections 

over the benchmark method (a constant correction of 1.2) were relatively small. 

At the spatial scale the spatial averages needed to be corrected for both gauge undercatch and flat field 

overestimation compared to complex terrain. The correction for the latter is based on published data that 

does not account for more recent data sets. In addition, the correction was not applicable to forested 

terrain. The chosen evaluation methods were not able to distinguish between corrected, uncorrected, or 

falsely corrected precipitation variants, even though falsely corrected precipitation was largely different 

from the other variants.  

2.5 Outreach work, publication of data and results 
Preliminary results were presented at the Swiss Geoscience Meeting 2022 in Lausanne. A shortened 

manuscript version of this report is planned to be published in German in Wasser, Energie, Luft. 

2.6 Outlook 
The limits of the parametric snow model can be updated using particle filter data assimilation techniques 

and energy balance snow models. Ongoing work in this direction can be used to update the results 

presented here. We used published data to estimate the overestimation of the flat field (Grünewald et al., 

2015), while in the meantime new LiDAR measurements with new and more precise technology are 

available at additional sites in Switzerland. It needs to be checked whether the corrections used here are 

also supported by more recent LiDAR data, especially in forested terrain. In addition, evaluation methods 

for the spatial scale need to be developed that can distinguish between small differences in precipitation 

input. One possibility is the frequently used method of calibrating and evaluating hydrological models in 

nearby catchments or sub-catchments of a larger catchment. 
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